Understanding MPLS/VPN Security Issues

SEC-370

Michael Behringer <mbehring@cisco.com>
Agenda

• Analysis of MPLS/VPN Security

• Security Recommendations

• MPLS Security Architectures
 Internet Access
 Firewallsing Options

• Attacking an MPLS Network

• IPsec and MPLS

• Summary
The Principle: A “Virtual Router”

Virtual Routing and Forwarding Instance

ip vrf Customer_A
 rd 100:110
 route-target export 100:1000
 route-target import 100:1000

interface Serial0/1
 ip vrf forwarding Customer_A

Assign Interface to “Virtual Router”

Route Distinguisher:
Makes VPN routes unique

Export this VRF with community 100:1000

Import routes from other VRFs with community 100:1000

© 2003, Cisco Systems, Inc. All rights reserved.
General VPN Security Requirements

- Address Space and Routing Separation
- Hiding of the MPLS Core Structure
- Resistance to Attacks
- Impossibility of VPN Spoofing

Working assumption: The core (PE+P) is secure
Address Space Separation

Within the MPLS core all addresses are unique due to the Route Distinguisher.
Routing Separation

- Each (sub-) interface is assigned to a VRF
- Each VRF has a RD (route distinguisher)
- Routing instance: within one RD
 -> within one VRF

-> Routing Separation
Hiding of the MPLS Core Structure

• VRF contains MPLS IPv4 addresses
• Only peering Interface (on PE) exposed (-> CE)!
 -> ACL or unnumbered
Resistance to Attacks: Where and How?

- Where can you attack?
 Address and Routing Separation, thus:
 Only Attack point: peering PE

- How?
 - Intrusions (telnet, SNMP, ... routing protocol)
 - DoS

Secure with ACLs
Secure with MD5

See ISP Essentials
Label Spoofing

- PE router expects IP packet from CE
- Labelled packets will be dropped
- Thus no spoofing possible
Comparison with ATM / FR

<table>
<thead>
<tr>
<th>Feature</th>
<th>ATM/FR</th>
<th>MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address space separation</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Routing separation</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Resistance to attacks</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Resistance to Label Spoofing</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Direct CE-CE Authentication (layer 3)</td>
<td>yes</td>
<td>with IPsec</td>
</tr>
</tbody>
</table>
Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures
 - Internet Access
 - Firewalling Options
- Attacking an MPLS Network
- IPsec and MPLS
- Summary
Security Recommendations for ISPs

- Secure devices (PE, P): They are trusted!
- CE-PE interface: Secure with ACLs
- Static PE-CE routing where possible
- If routing: Use authentication (MD5)
- Separation of CE-PE links where possible (Internet / VPN)
- LDP authentication (MD5)
- VRF: Define maximum number of routes

Note: Overall security depends on weakest link!
PE-CE Routing Security

In order of security preference:

1. **Static**: If no dynamic routing required (no security implications)

2. **BGP**: For redundancy and dynamic updates (many security features)

3. **RIPv2**: If BGP not supported (limited security features)
Securing the MPLS Core

- **MPLS core**
 - **BGP Route Reflector**
 - **P**
 - **PE**
 - **VPN**
 - **CE**

- **Internet**
- **BGP peering with MD5 authentic.**
- **LDP with MD5**
- **ACL and secure routing**

CE
PE
VPN

© 2003, Cisco Systems, Inc. All rights reserved.
Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
 - MPLS Security Architectures
 - Internet Access
 - Firewalling Options
- Attacking an MPLS Network
- IPsec and MPLS
- Summary
MPLS Internet Architectures: Principles

• Core supports VPNs and Internet
• VPNs remain separated
• Internet as an option for a VPN
• Essential: Firewalling
Separate VPN and Internet Access

- Separation: +++
- DoS resistance: +++
- Cost: $$$ (Two lines and two PEs: Expensive!)
Separate Access Lines + CEs, one PE

- Separation: +++
- DoS resistance: ++ (DoS might impact VPN on PE)
- Cost: $$ (Two lines, but only one PE)
Using a Single Access Line

Requirements to share a line:

• PE requires separate sub-interfaces
• CE requires separate sub-interfaces
• CE side requires separate routing
Shared Access Line, Frame Relay

- Separation: +++
- DoS resistance: + (DoS might affect VPN on PE, line, CE)
- Cost: $
Shared Access Line, Policy Routing

- Separation: +++
- DoS resistance: + (DoS might affect VPN on PE, line, CE)
- Cost: $
Shared Access Line, CE with VRFs

- Separation: +++
- DoS resistance: + (DoS might affect VPN on PE, line, CE)
- Cost: $
Hub-and-Spoke VPN with Internet Access

Hub Site → MPLS core → Internet

Firewall NAT
Internet CE
VPN CE
IDS
VPN CE
To VPN

PE1
VRF Internet
PE2
VRF VPN
PEs
CEs

Spoke 1
Spoke 2
Spoke 3

To Internet →
Alternative Topologies

• Full VPN mesh, one Internet Access
• Internet access at several sites
 -> Several firewalls needed
 -> More complex
• Internet Access from all sites
 -> Complex, one firewall per site
Central Firewalling: Option 1: Stacking Firewalls

- Central Management
- Strong firewalls
- Customer can choose firewall
- Different policies per customer possible
- CEs not touched

- One firewall per customer

Internet

NAT and Firewalling

MPLS core

VPNs

SP Domain

PEs

CEs

Customer 1

Customer 2

Customer 3
Central Firewalling:
Option 2: NAT on CE, one central FW

+ Central Management
+ One strong firewall
+ Easy to deploy
- Customer cannot pick his firewall
- CEs need config

Internet

MPLS core

e.g. PIX 535

Firewalling

Customer 1

Customer 2

Customer 3

NAT

VPN

PEs

CEs
Central Firewalling: Option 3: IOS Firewall on CE

+ Economic
+ One firewall per customer
+ No central devices
- Management more difficult
- CEs need config

MPLS core

Internet

PEs

VPN

CEs

NAT and firewall

Customer 1

Customer 2

Customer 3

SP Domain
A Word on Carrier’s Carrier

- Same principles as in normal MPLS
- Customer trusts carrier who trusts carrier
Agenda

• Analysis of MPLS/VPN Security
• Security Recommendations
• MPLS Security Architectures
 Internet Access
 Firewalling Options
• Attacking an MPLS Network
• IPsec and MPLS
• Summary
Ways to Attack

- “Intrusion”: Get un-authorised access

 Theory: Not possible (as shown before)

 Practice: Depends on:

 - Vendor implementation
 - Correct config and management

- “Denial-of-Service”: Deny access of others

 Much more interesting...

No Trust?

Use IPsec between CEs!
DoS against MPLS

• DoS is about Resource Starvation, one of:
 - Bandwidth
 - CPU
 - Memory (buffers, routing tables, …)

- In MPLS, we have to examine:

- Rest is the same as in other networks
Attacking a CE from MPLS (other VPN)

• Is the CE reachable from the MPLS side?
 -> only if this is an Internet CE, otherwise not!
 (CE-PE addressing is part of VPN!)

• For Internet CEs:
 Same security rules apply as for any other access router.

MPLS hides VPN-CEs: Secure!
Internet CEs: Same as in other networks
Attacking a CE-PE Line

- Also depends on reachability of CE or the VPN behind it
- Only an issue for Lines to Internet-CEs
 Same considerations as in normal networks
- If CE-PE line shared (VPN and Internet):
 DoS on Internet may influence VPN! Use CAR!

MPLS hides VPN-CEs: Secure!
Internet CEs: Same as in other networks
Attacking a PE Router

CE1 IP(CE1) PE

CE2 IP(CE2) PE

IP(PE; fa0)

VRF CE1

VRF CE2

IP(PE; I0)

VRF Internet

Only visible: “your” interface and interfaces of Internet CEs
DoS Attacks to PE can come from:

- Other VPN, connected to same PE
- Internet, if PE carries Internet VRF

Possible Attacks:

- Resource starvation on PE
 Too many routing updates, too many SNMP requests, small servers, ...

Has to be secured
Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures
 - Internet Access
 - Firewalling Options
- Attacking an MPLS Network
- IPsec and MPLS
- Summary
Use IPsec if you need:

- Encryption of traffic
- Direct authentication of CEs
- Integrity of traffic
- Replay detection

- Or: If you don’t want to trust your ISP for traffic separation!
IPsec Topologies

• CE to CE (static cryptomap)
• Hub and Spoke (dynamic cryptomap)

Full Mesh with TED: Ideal!!!

MPLS/VPN and TED are an ideal combination!!

IPsec is independent of MPLS
IPsec and MPLS work together
Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures
 - Internet Access
 - Firewalling Options
- Attacking an MPLS Network
- IPsec and MPLS
- Summary
MPLS doesn’t provide:

- Protection against mis-configurations in the core
- Protection against attacks from within the core
- Confidentiality, authentication, integrity, anti-replay -> Use IPsec if required
- Customer network security
Conclusions

• MPLS VPNs can be secured as well as ATM/FR VPNs
• Depends on correct configuration and function of the core
• Use IPsec if you don’t trust core
• There are many ways to map VPNs with Internet access securely onto MPLS
Understanding MPLS/VPN Security Issues

Session SEC-370
Please Complete Your Evaluation Form

Session SEC-370